Random Composite Forests
نویسندگان
چکیده
We introduce a broad family of decision trees, Composite Trees, whose leaf classifiers are selected out of a hypothesis set composed of p subfamilies with different complexities. We prove new data-dependent learning guarantees for this family in the multi-class setting. These learning bounds provide a quantitative guidance for the choice of the hypotheses at each leaf. Remarkably, they depend on the Rademacher complexities of the sub-families of the predictors and the fraction of sample points correctly classified at each leaf. We further introduce random composite trees and derive learning guarantees for random composite trees which also apply to Random Forests. Using our theoretical analysis, we devise a new algorithm, RANDOMCOMPOSITEFOREST (RCF), that is based on forming an ensemble of random composite trees. We report the results of experiments demonstrating that RCF yields significant performance improvements over both Random Forests and a variant of RCF in several tasks.
منابع مشابه
Mapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network
The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...
متن کاملRandom forests algorithm in podiform chromite prospectivity mapping in Dolatabad area, SE Iran
The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, and pyroxenite. These deposits are irregular in shape, and are distributed as small lenses along colored mélange zones. The area has a great potential for discovering further chromite...
متن کاملMondrian Forests: Efficient Online Random Forests
Ensembles of randomized decision trees, usually referred to as random forests, are widely used for classification and regression tasks in machine learning and statistics. Random forests achieve competitive predictive performance and are computationally efficient to train and test, making them excellent candidates for real-world prediction tasks. The most popular random forest variants (such as ...
متن کاملRandom Forests and Adaptive Nearest Neighbors
In this paper we study random forests through their connection with a new framework of adaptive nearest neighbor methods. We first introduce a concept of potential nearest neighbors (k-PNN’s) and show that random forests can be seen as adaptively weighted k-PNN methods. Various aspects of random forests are then studied from this perspective. We investigate the effect of terminal node sizes and...
متن کاملRandom Forests Based Multiple Classifier System for Power-line Scene Classification
The increasing use of electrical energy has yielded more necessities of electric utilities including transmission lines and electric pylons which require a real-time risk monitoring to prevent massive economical damages. Recently, Airborne Laser Scanning (ALS) has become one of primary data acquisition tool for corridor mapping due to its ability of direct 3D measurements. In particular, for po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016